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ABSTRACT

Accurate multiple sequence alignment is challenging on many data sets, including those
that are large, evolve under high rates of evolution, or have sequence length hetero-
geneity. While substantial progress has been made over the last decade in addressing
the first two challenges, sequence length heterogeneity remains a significant issue for
many data sets. Sequence length heterogeneity occurs for biological and technological
reasons, including large insertions or deletions (indels) that occurred in the evolu-
tionary history relating the sequences, or the inclusion of sequences that are not fully
assembled. Ultra-large alignments using Phylogeny-Aware Profiles (UPP) (Nguyen
et al. 2015) is one of the most accurate approaches for aligning data sets that exhibit
sequence length heterogeneity: it constructs an alignment on the subset of sequences it
considers ‘‘full-length,’’ represents this ‘‘backbone alignment’’ using an ensemble of
hidden Markov models (HMMs), and then adds each remaining sequence into the
backbone alignment based on an HMM selected for that sequence from the ensemble.
Our new method, WeIghTed Consensus Hmm alignment (WITCH), improves on UPP
in three important ways: first, it uses a statistically principled technique to weight and
rank the HMMs; second, it uses k > 1 HMMs from the ensemble rather than a single
HMM; and third, it combines the alignments for each of the selected HMMs using a
consensus algorithm that takes the weights into account. We show that this approach
provides improved alignment accuracy compared with UPP and other leading align-
ment methods, as well as improved accuracy for maximum likelihood trees based on
these alignments.
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1. INTRODUCTION

Multiple sequence alignment is a necessary precursor for many problems in biology, including

phylogeny estimation (Morrison and Ellis, 1997; Ogden and Rosenberg, 2006), protein family clas-

sification (Diplaris et al., 2005; Brown et al., 2007; Schwacke et al., 2019), and detection of selection

(Fletcher and Yang, 2010; Jordan and Goldman, 2012). However, accurate estimation of multiple sequence

alignments is challenging under many conditions, including large numbers of sequences and high rates of

evolution.

There are now several methods that provide high accuracy even for very large data sets with 10,000 or

more sequences (e.g., Katoh and Toh, 2008; Mirarab et al. 2015; Nguyen et al. 2015; Sievers and Higgins

2018; Smirnov and Warnow 2021a), but only a few have high accuracy under high rates of evolution.

However, another issue that creates difficulties for alignment is sequence length heterogeneity, which can

arise for many different reasons, such as the inclusion of reads or partially assembled sequences, or more

simply through evolutionary processes that include large indels. As seen in Figure 1, sequence length

heterogeneity is present in biological data sets (Cannone et al., 2002).

Studies evaluating alignment methods under conditions with many short sequences have shown that

many otherwise excellent alignment methods can degrade in accuracy substantially under those conditions

(Nguyen et al., 2015), and trees estimated on these alignments can also be poor (Smirnov and Warnow,

2021b). Thus, the alignment of large data sets with sequence length heterogeneity is an interesting and

important bioinformatic challenge.

A natural approach to aligning data sets with sequence length heterogeneity uses two stages: the first

stage selects and aligns sequences that are considered full-length, and the second stage adds the remaining

sequences into the alignment computed in the first phase. This approach allows methods that have high

accuracy on data sets that do not have substantial sequence length heterogeneity to be used in the first stage.

FIG. 1. Sequence length histograms of five biological data sets and one simulated data set (1000M1) from Liu et al.

(2009). The biological data sets (16S.M, 23S.M, 5S.3, 5S.T, and 16S.B.ALL) are from the Comparative Ribosomal

Website (Cannone et al., 2002). Note that the simulated data set shows essentially no sequence length heterogeneity,

while each of the other data sets has many shorter sequences, and some have longer sequences as well.
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The second stage is performed using methods designed for adding sequences into alignments, and so can be

specifically designed to address sequence length heterogeneity.

Ultra-large alignments using Phylogeny-Aware Profiles (UPP) is a method that uses this two-stage

approach (Nguyen et al., 2015). UPP performs the second stage by representing the backbone alignment

with an ensemble of hidden Markov models (HMMs) [see Brown et al. (1993); Haussler et al. (1993);

Krogh et al. (1994) for the earliest articles on HMMs in bioinformatics, and Durbin et al. (1998) for a

standard textbook about HMMs in molecular sequence analysis]. Then, to add a given sequence into the

backbone alignment, the HMM in the ensemble of HMMs (eHMM) with the best bitscore is selected and

HMMAlign [one of the methods in HMMER (Finn et al., 2011)] is used to add the sequence into the

backbone alignment (i.e., to compute an ‘‘extended alignment’’).

Finally, UPP uses transitivity to merge the extended alignments. UPP can run on very large data sets

(even up to 1 million sequences), and was shown to have better accuracy than the alignment methods

Muscle (Edgar, 2004), MAFFT (Katoh and Standley, 2013), Clustal-Omega (Sievers et al., 2011), and

PASTA (Practical Alignments using SATé and TrAnsitivity) (Mirarab et al., 2015), when aligning data sets

with large numbers of fragmentary sequences (Nguyen et al., 2015).

In this study, we present a novel method for aligning data sets with sequence length heterogeneity. We

follow the same basic two-stage method that is used by UPP, but we change how sequences are added into

the backbone alignment. An important component of this method is a statistically rigorous technique that

we derive for computing the probability that a given HMM generates a given sequence, and we use this

technique to weight each HMM-query pair. Then, to add a sequence x into the backbone alignment, we

select the top k HMMs (ranked by their weights); each such HMM defines a single extended alignment that

induces the backbone alignment and includes x, and each such extended alignment is weighted by the

probability that the selected HMM generates x.

Finally, we compute the weighted consensus of these query alignments using a graph clustering method

that is a modified version of Graph Clustering Merger (GCM), a method designed for use in MAGUS

(Multiple sequence Alignment using Graph clUStering) (Smirnov and Warnow, 2021a).

We refer to the method as WeIghTed Consensus Hmm alignment (WITCH). We benchmark WITCH on

a collection of simulated and biological data sets and compare it with PASTA (Mirarab et al., 2015), UPP

(Nguyen et al., 2015), MAGUS (Smirnov and Warnow, 2021a), MAFFT (Katoh and Standley, 2013), and

Clustal-Omega (Sievers and Higgins, 2018). Our study shows that WITCH produces the best alignment

accuracy of these methods on data sets with high levels of fragmentation and matches or improves on the

other methods under low fragmentation conditions. In addition, trees estimated on WITCH alignments

match or improve accuracy compared with other methods under conditions with fragmentation.

2. THE WITCH ALGORITHM

2.1. Overview

The input to WITCH is a set S of unaligned sequences and the output is a multiple sequence alignment.

WITCH follows the standard two-stage strategy as UPP (Nguyen et al., 2015), but differs in the details in

ways that enable it to be more accurate, although at an increase in the running time (Supplementary Fig. S4).

WITCH has two algorithmic parameters: a number z that impacts the construction of the ensemble of HMMs

and a number k that impacts how each query sequence is added to the backbone alignment. In this study, we

present the five phases of WITCH at a very high level, and provide details in the relevant subsections below.

� Phase 0: A subset S0 of the input set S of unaligned sequences is selected as the ‘‘backbone se-

quences,’’ and an alignment and tree are computed on these backbone sequences [default: MAGUS

(Smirnov and Warnow, 2021a)]. The remaining sequences are referred to as ‘‘query sequences.’’
� Phase 1: An ensemble of HMMs is computed on the backbone alignment.
� Phase 2: For every query sequence q, a ‘‘weight’’ is computed for every HMM in the ensemble,

reflecting the fit between the HMM and q.
� Phase 3: For every query sequence q, the top k HMMs are selected and then used to create an

‘‘extended alignment’’ on fqg [ S0.
� Phase 4: The extended alignments are merged together into an alignment on the full data set using

transitivity.

WITCH: WEIGHTED CONSENSUS HMM ALIGNMENT 3
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Phases 1–4 are illustrated in Figure 2, and Phase 3 is illustrated with additional detail in Figure 3.

Some comments about these phases should be helpful in explaining the techniques. First, Phase 0 is

identical to how it is performed in UPP, with the use of MAGUS instead of PASTA for constructing the

backbone alignment based on the recent study that showed this substitution improved accuracy (Shen et al.,

2022b). Phase 1 is identical to how it is performed in UPP. Phase 2 is unique to WITCH and is based on a

theoretical derivation provided in Section 2.4. Phase 3 is also unique to WITCH but builds on a technique

used in MAGUS called the ‘‘Graph Clustering Merger.’’ Phase 4 is the same as used in UPP and is a simple

use of transitivity of pairwise homologies.

Thus, Phases 2 and 3 are the most important innovations in WITCH compared with prior methods,

but all five phases contribute to the final results. In the subsections that follow, we describe each phase

in detail.

2.2. Phase 0: backbone alignment and tree construction

In this phase, a subset of the sequences is extracted to form the ‘‘backbone sequences’’ and ‘‘backbone

tree.’’ We use the same technique as in UPP for this step, which we now describe. The set of backbone

sequences can be indicated by the user, or else they can be selected based on their length: the median length

of the unaligned sequences is computed, and those sequences that are within 25% of the median length of

the sequences in the input are considered ‘‘full-length.’’ Then, 1000 sequences are randomly selected from

the full-length sequences, which we denote as the backbone sequences (but if there are fewer than 1000

full-length sequences, all the sequences are selected). A MAGUS alignment is computed on the backbone

sequences and a maximum likelihood tree is computed on the backbone alignment using FastTree2 (Price

et al., 2010).

FIG. 2. Overview of the WITCH algorithm. The input is a set of unaligned sequences and values for k and z. Phase 0:

The input sequences are split into two sets: the backbone sequences and the query sequences and an alignment and tree

are built on the backbone sequences. Phase 1: An eHMM is built on the backbone alignment, stopping the decom-

position when the subtrees have at most z leaves (default: z = 10). Phase 2: For every query sequence, the HMMs in the

eHMM are weighted and ranked, and the top k HMMs are selected (we illustrate this with k = 2). Phase 3: For every

query sequence and for each of its k selected HMM, an extended alignment (containing the backbone sequences and the

query sequence) is computed using HMMAlign (Finn et al., 2011). A weighted consensus of these extended alignments

is computed using a weighted version of the GCM (Smirnov and Warnow, 2021a). Phase 4: The final alignment is

obtained by transitively merging all consensus alignments. Phases 1 and 4 are identical to the corresponding phases in

UPP, and Phases 2 and 3 are extensions of techniques from UPP (Nguyen et al., 2015) and MAGUS (Smirnov and

Warnow, 2021a). eHMM, ensemble of hidden Markov models; GCM, Graph Clustering Merger; MAGUS, Multiple

sequence Alignment using Graph clUStering; WITCH, WeIghTed Consensus Hmm alignment.
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2.3. Phase 1: eHMM construction

Given the backbone alignment A and its maximum likelihood tree T, an eHMM is constructed using the

same procedure as in UPP. UPP decomposes the backbone alignment A into subsets, and takes as input a

parameter z that specifies how small the subsets of sequences need to be before stopping the decomposition.

UPP produces the decomposition using T: it repeatedly finds and removes a ‘‘centroid edge’’ (i.e., an edge

that produces as balanced a split as possible) until all the parts have at most z leaves. This decomposition

produces a set of disjoint subtrees, each with at most z leaves, and so also a set of disjoint subsets of

sequences and the set of subset alignments induced by A.

The collection of subset alignments that UPP produces is hierarchical: it includes the alignment A on

the full set S of sequences, as well as the alignment induced by A on every subset that is produced during

the decomposition strategy. For example, if only one edge is deleted in constructing the ensemble, then

UPP will produce three alignments: the alignment on the full set, and the alignment induced on each of

the two subsets produced by deleting that edge. In particular, each edge deletion adds two alignments to

the set.

For each alignment in the set, we build a profile HMM using HMMBuild from HMMER (Finn et al.,

2011). The collection of HMMs is the eHMMs that represent the backbone alignment A.

2.4. Phase 2: HMM weighting and ranking

The input to Phase 2 is an ensemble of HMMs representing the backbone alignment and the set of query

sequences (which are not part of the backbone alignment). The output of this phase is a selection of k

HMMs for each query sequence, along with the weighting of each HMM-query pair.

The main innovation in Phase 2 is that the weighting we provide for a given HMM-query pair is designed

to equal the probability that the given HMM generates the given query sequence. This enables us to

rigorously select and then use k � 1 HMMs for each query sequence.

The weighting formula is an extension of the alignment support calculation provided in Nguyen et al. (2014).

Given a query sequence q and HMM Hi, HMMSearch calculates the corresponding bitscore BS(Hi‚ q) by

BS(Hi‚ q) = log2

P(qjHi)

P(qjHnull)
(1)

FIG. 3. An example of the weighted GCM alignment phase. We have two constraints, one the backbone alignment A

and the other a query sequence q. Here we show the case of having two extended alignments (i.e., k = 2) obtained by

aligning q to the top two HMMs. An alignment graph is formed in the same way as GCM except that each extended

alignment contributes to edge weights differently. The remaining steps are the same as the GCM algorithm (i.e.,

clustering, cleaning, and finding a trace).
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where P(qjHi) is the probability that Hi generates q, and P(qjHnull) is the probability that a random (null)

HMM generates q. Assuming that q is generated by exactly one of the HMMs and that there are d HMMs,

we can express the probability P(Hijq) that Hi generates q by

P(Hijq) =
P(qjHi)P(Hi)

Pd
j = 1 P(qjHj)P(Hj)

(2)

where we assume that the prior probability P(Hi) is only affected by the number of sequences in the

alignment used to construct HMM Hi. For the case where every two HMMs in the ensemble are constructed

on disjoint sets of sequences, the prior probability P(Hi) is

P(Hi) =
si

S
(3)

where si is the number of sequences in the alignment used to build Hi and S =
Pd

j = 1 sj is the total number of

unique sequences across all these alignment subsets. For the case where the HMMs are based on over-

lapping sets of sequences (e.g., eHMMs in this study), the prior P(Hi) is

P(Hi) =
si

S�
(4)

where S� =
Pd

j = 1 sj is the sum of total appearances of sequences in the HMMs.

Therefore, using Equation (4) we can reduce Equation (2) to

P(Hijq) =
1

Pd
j = 1 2

log2

P(qjHj)sj

P(qjHi)si

(5)

By Equation (1), we have

BS(Hj‚ q) - BS(Hi‚ q) = log2

P(qjHj)

P(qjHnull)
- log2

P(qjHi)

P(qjHnull)

= log2

P(qjHj)

P(qjHi)

= log2

P(qjHj)

P(qjHi)
(7)

Substituting Equation (7) in (5) we have

wHi‚ q = P(Hijq) =
1

Pd
j = 1 2

BS(Hj‚ q) - BS(Hi‚ q) + log2

sj
si

(8)

where wHi‚ q is the probability that q is generated by Hi and is denoted as the weight for the pair q‚ Hi.

It is trivial to show that for any given query sequence q‚
Pd

i = 1 wHi‚ q = 1. Thus, given a query sequence

q, these weights define probabilities on the HMMs in the ensemble.

We refer to these weights as ‘‘adjusted bitscores,’’ and the original use within UPP (which uses the

bitscores without any modification) as ‘‘raw bitscores.’’

2.5. Phase 3: weighted GCM alignment

For every query sequence q, we use HMMAlign to align q to its top k HMMs. This produces k

alignments, each of which includes the sequences in S0 and q. Note also that by construction, each induces

the backbone alignment A. Hence, we refer to these as ‘‘extended alignments.’’

This step is based on the GCM from MAGUS (Smirnov and Warnow, 2021a), and so, a brief description

of GCM is helpful. GCM is a technique for merging an input set of ‘‘constraint alignments’’ on disjoint sets

of sequences; hence, the output merged alignment must induce the constraint alignments. GCM first

computes a set of additional alignments (each on a subset of the input sequences sampled from different

constraint alignments), and uses these additional alignments to define an ‘‘alignment graph.’’ This align-

ment graph has a node for each site in each constraint alignment, and the edges are obtained from the

6 SHEN ET AL.
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additional alignments. The nodes in this graph are then clustered using a two-step process that begins with

the Markov Clustering Algorithm (Van Dongen, 2000) and then modifies the clustering to enforce the

requirement of being a valid alignment (also called a valid ‘‘trace’’).

As shown in Zaharias et al. (2021), this approach is a good heuristic for the Maximum Weight Trace

problem posed in Kececioglu (1993), extended for use in merging disjoint alignments.

For WITCH, we slightly modify GCM so that it can be used as a method for combining extended

alignments, each provided with its weight. We enforce the requirement that the backbone alignment

(whether produced by MAGUS or by PASTA) be maintained so that the final set of extended alignments

produced in Phase 3 (one for each query sequence) can be merged into an alignment of the entire data set

using transitivity in Phase 4.

For each query sequence q, we create a ‘‘weighted alignment graph’’ based on the technique in GCM.

Each column (site) in the backbone alignment A and each letter in q define a node in the alignment graph;

thus, there are L + L0 nodes, where L is the length of the backbone alignment and L0 is the length of the

query sequence q. We denote the vertices derived from the backbone alignment by vi (where i denotes the

index of the site in the backbone alignment) and the vertices derived from the query sequence by qj (where j

denotes the index of the letter in the query sequence). The edges in the alignment graph are defined by the k

extended alignments (each of which induces A and also contains q).

Specifically, given an extended alignment in which site i in the backbone alignment is aligned with the

jth letter from q, we include an edge between vi and qj. The weight of the edge is the weight of the HMM

(i.e., its adjusted bitscore) that was used to define this extended alignment; thus, every edge is given with a

positive weight that is bounded by 1.

Given the weighted alignment graph, we then follow the steps used in GCM to produce a new extended

alignment that combines the information from the k extended alignments. The remaining steps of GCM are

unchanged (i.e., clustering, cleaning, and finding a trace), and the final merged alignment reported by GCM

is the weighted consensus alignment on S0 [ fqg (see Fig. 3 for an example).

2.6. Phase 4: transitivity

The last phase also follows the UPP procedure after we obtain consensus alignments for all query

sequences. Since all consensus alignments induce the backbone alignment A, we transitively add each

query sequence q into A using the weighted consensus alignment for q, introducing gaps when necessary.

3. EXPERIMENTAL DESIGN

3.1. Overview

We performed three experiments. In our first experiment, we use fragmentary versions of biological and

simulated testing data sets to set defaults for the algorithmic parameters k and z and to determine whether

using adjusted bitscores is beneficial. In the second experiment, we compare WITCH using these default

parameters with leading multiple sequence alignment methods on additional simulated data sets with

introduced fragmentation, while the third experiment performs this analysis on additional biological data

sets. In all cases, we evaluate the methods for alignment and tree estimation error. We separate the training

data sets (used in Experiment 1 for setting the algorithmic parameters) from the test data sets (used in

Experiments 2 and 3 for comparing WITCH with other methods).

All analyses were run on the UIUC Campus Cluster, with 16 cores and 32 GB memory, and the runtime

limit was set to 24 hours. For tree estimation, we ran RAxML-NG (Kozlov et al., 2019), a maximum

likelihood-based tree estimation method, on 16 cores and 32 GB memory for up to 4 hours, and the last tree

reported within the time limit was used for comparison. See Supplementary Materials section S1 for

commands needed to reproduce the experiments.

3.2. Data sets

We evaluate WITCH on both simulated and biological nucleotide data sets, including versions with

introduced fragmentation. The simulated data sets include nine model conditions generated using the ROSE

(Stoye et al., 1998) software, each with 1000 sequences per replicate and 20 replicates per model condition,

which have been used in prior studies to evaluate alignment methods (Liu et al., 2009, 2012; Mirarab et al.,

WITCH: WEIGHTED CONSENSUS HMM ALIGNMENT 7
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2015; Smirnov and Warnow, 2021a). The biological data sets include five ribosomal RNA data sets from

the Comparative Ribosomal Website (CRW) (Cannone et al., 2002) (see Section 3.2.2.). Most data sets

come from prior studies and are available in public databases, while the remaining data sets are available in

the Illinois Data Bank (see the Data Availability section). The empirical statistics for all data sets can be

found in Table 1, which includes numbers of sequences, average and maximum p-distances, percentages of

gaps, average sequence lengths, and alignment lengths.

In addition, Figure 1 presents histograms about the sequence length distribution for the five biological

data sets and a representative simulated data set.

The simulated data sets have known true alignments and trees, which allows us to evaluate alignment and

tree accuracy. The biological data sets have reliable reference alignments based on the RNA structure

(Cannone et al., 2002). However, the biological data sets do not have reliable reference trees, and so, we

can only evaluate alignment accuracy on the biological data sets.

We made versions of these simulated data sets that had fragmentary sequences, with relative long

fragments (*500 bp) and shorter fragments (*250 bp). All in all, we computed alignments on 18 model

conditions (9 basic model conditions, each with low-fragmentary [LF] or high-fragmentary [HF] se-

quences) and each model condition had 19 or 20 replicates, making for 358 1000-sequence data sets (since

we removed one replicate from one basic model condition).

3.2.1. Simulated data sets. We use nine 1000-sequence model conditions from prior studies to

evaluate alignment methods SATé, PASTA, and MAGUS (Liu et al., 2009; Mirarab et al., 2015; Smirnov

and Warnow, 2021a); these were simulated using the ROSE (Stoye et al., 1998) software, and so are named

‘‘ROSE’’ data sets. We used the 1000L4, 1000S4, 1000M3, 1000S2, 1000M2, 1000L1, 1000L3, 1000S1,

and 1000M1 model conditions, which evolve with indels and also substitutions (under the GTRGAMMA

model).

These models range in difficulty depending on the rate of evolution and probability of indels, with

1000S4 among the easiest models and 1000M1 among the most difficult. The letters ‘‘L/M/S’’ in the model

name denote the indel length in the alignment, where ‘‘L’’ is for long indel, ‘‘M’’ for medium, and ‘‘S’’ for

short. Each model condition has 20 replicates [although we removed one replicate from the 1000M1

condition as it was considered an outlier in a prior study (Smirnov and Warnow, 2021a)].

Table 1. Empirical Statistics for All Data Sets

Data set No. of sequences

p-distance

% gaps Average sequence length Alignment lengthAverage Max

Simulated

1000M1(19)* 1000 0.694 0.781 74.3 1011 3960

1000S1(20) 1000 0.694 0.782 53.0 1002 2141

1000L3(20) 1000 0.687 0.770 85.2 1031 7042

1000L1(20) 1000 0.695 0.782 73.2 1015 3817

1000M2(20)* 1000 0.684 0.775 74.2 1014 3972

1000S2(20) 1000 0.693 0.776 35.0 1001 1546

1000M3(20) 1000 0.660 0.754 62.8 1007 2722

1000L4(20) 1000 0.500 0.627 58.6 1007 2446

1000S4(20) 1000 0.501 0.625 24.6 1000 1328

Biological

16S.M(1)* 901 0.359 0.887 78.1 1035 4722

23S.M(1)* 278 0.377 0.703 83.7 1746 10,738

5S.3 5507 0.418 1.000 74.5 105 414

5S.T 5751 0.425 1.000 75.6 106 436

16S.B.ALL 27,643 0.210 0.769 80.0 1372 6857

Statistics are computed and averaged over all replicates (numbers of replicates are marked next to data set names) and before

introducing any fragmentation. The p-distance denotes the fraction of sites between two aligned sequences that have different

nucleotides and % gaps denote the percentage of the alignment that is occupied by dashes (gaps). All data sets are made high/low

fragmentary (see Section 3.2 for definitions of high/low levels of fragmentation). Replicate 16 for 1000M1 is not included in this study

because it is identified as a persistent outlier in Smirnov and Warnow (2021b). The training data sets are indicated by asterisks (*).
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3.2.2. Biological data sets. We use five data sets from the CRW (Cannone et al., 2002), which are based

on structural alignments. Two of these data sets (i.e., 16S.M and 23S.M) are used in Experiment 1 (training), and

the remaining three are used in Experiment 3 (testing). Their sequence length histograms are shown in Figure 1.

3.2.3. Introduced fragmentation. The training data sets from Experiment 1 are from a prior study

(and publicly available), and have fragmentation introduced using a protocol described in Nguyen et al.

(2015). To create the testing data sets in Experiment 2, we used the same approach as was used to create the

training data sets used in Experiment 1. Both Experiment 1 and Experiment 2 have two levels of frag-

mentation, referred to as HF and LF:

� HF means that 50% of the sequences are made into fragments. Fragment lengths are sampled from a

normal distribution N(M‚ 60), where M corresponds to 25% of the original median sequence length.
� LF is similar to HF and uses N(M‚ 60) to sample fragment lengths, except that only 25% of the

sequences are made into fragments and M corresponds to 50% of the original median sequence length.

On the simulated data sets we used, the HF versions produced fragments of mean between 250 and

260 bp in length, and the LF versions had fragments of mean between 490 and 510 in length. In Experiment

3 we also introduced fragmentation into the 16S.B.ALL data set, but with shorter fragments averaging

100 bp in length. The script to generate an alignment with fragments is available at https://git.io/JOGO1

3.2.4. Training versus testing data. We use HF/LF versions of 1000M1, 1000M2, 16S.M, and

23S.M as the training data for Experiment 1 (algorithmic parameter selection), and the remaining data sets

for the experiments where we evaluate methods.

3.3. Other alignment methods

We compare WITCH with MAFFT (Katoh and Standley, 2013), Clustal-Omega (Sievers and Higgins,

2018), PASTA (Mirarab et al., 2015), MAGUS (Smirnov and Warnow, 2021a), and UPP (Nguyen et al.,

2015). This collection includes methods that are closely related to WITCH (i.e., MAGUS and UPP) and

other methods that have performed well in prior studies (i.e., Clustal-Omega, MAFFT, and PASTA).

The current default version of MAGUS uses a recursive approach on subset alignments if they contain

>200 sequences; however, Smirnov (2021) noted that ‘‘recursion does not improve accuracy.. recursion

should be avoided if possible, and only engaged when the dataset becomes too large for the subsets to be

reasonably aligned with the base method.’’ Therefore, we use MAGUS without recursion in this study.

Also, since UPP has better accuracy using the MAGUS backbone instead of PASTA (Shen et al., 2022b),

we use UPP in this way, and denote this usage by MAGUS+UPP.

3.4. Criteria

Alignment error is calculated using sum-of-pairs false-negative (SPFN) and sum-of-pairs false-positive

(SPFP) rates, where the SPFN rate is the fraction of pairs of homologies that are in the reference alignment

but missing in the estimated alignment, and the SPFP rate is the fraction of pairs of homologies that are in

the estimated alignment but missing in the reference alignment. We also report the average of these two

values. These error rates are obtained using FastSP (Mirarab and Warnow, 2011).

We also compute trees on the estimated alignments using RAxML-NG (Kozlov et al., 2019), a popular

maximum likelihood-based tree estimation method. We report tree error by computing the missing branch

FN, or false negative error rate, which is the fraction of the branches in the reference tree (i.e., model tree for

the simulated data sets) missing from the estimated tree. Since the true tree is not known in the biological data

sets and the reference trees are unreliable, we do not report tree error for the biological data sets.

4. RESULTS AND DISCUSSION

4.1. Experiment 1: algorithmic parameter selection

We explore the following three algorithmic parameters for use within WITCH:

� z: the subtree size that determines the decomposition stopping condition. We vary z between 2, 5, 10,

and 50. This impacts Phase 1.
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� k: the number of HMMs selected to align a given query sequence. We vary k between 1, 2, 4, and 10.

This impacts Phases 2 and 3.
� HMM ranking: unweighted or weighted. ‘‘Unweighted’’ means that the HMMs are ranked using raw

bitscores, and then each created extended alignment has unit weight in the alignment graph.

‘‘Weighted’’ means that the HMMs are ranked using adjusted bitscores, and then, these weights are

used when constructing the alignment graph. This impacts Phases 2 and 3.

These parameter settings thus impact Phases 1, 2, and 3. Phase 0, which selects the backbone sequences

and then aligns them, is performed as in MAGUS+UPP, and Phase 4, which combines the extended

alignments (one for each query sequence), is performed as in UPP.

We let z range from 2 to 50 and k range from 1 to 10. Note that setting z = 10‚ k = 1, and using

unweighted HMMs is identical to MAGUS+UPP. We explore the impact of these choices on our training

data sets: the HF and LF versions of 1000M1, 1000M2, 16S.M, and 23S.M. In Supplementary Materials,

section S2 contains full results across these training data sets (Supplementary Tables S1–S5) as well as a

detailed discussion. Here we summarize that discussion, and note how we used the results to set the

algorithmic parameters for WITCH.

The impact of the parameters depends on the model condition, as we now discuss. The only noteworthy

differences in alignment accuracy and tree accuracy mainly appear in the HF conditions (where the fragments

are *250 bp in length) and even then the degree of difference depends on the average p-distance in the data set

(where the p-distance between two sequences is the fraction of the sites where they have different nucleotides).

Focusing therefore only on the HF conditions, we examine how the average p-distance in the data set affects

algorithmic parameter selection. Of the four data sets, the highest p-distance is in the 1000M1 condition

(0.694), followed by 1000M2 (0.683) and then by the 23S.M (0.377) and 16S.M (0.359).

We find essentially no impact from the choice of algorithmic parameters on the 16S.M and 23S.M data

sets, even under HF conditions, indicating that data sets with low p-distances where the fragmentary

sequences are *25% of full-length are still easy to align using MAGUS+UPP. We see that the algorithmic

parameters have a larger impact on the 1000M1 condition than on the 1000M2 condition. Thus, results on

these training data sets demonstrate that the impact is greatest when p-distances are large and there are a

large number of short sequences (our HF condition).

Finally, we saw that the somewhat small differences in alignment error can nevertheless result in

somewhat larger differences in tree error, indicating that algorithmic parameter selection may have a larger

impact on tree estimation than on alignment estimation error (at least as measured using SPFN and SPFP).

However, we also noted that certain settings of the parameters provided consistent advantages over the

other settings under challenging conditions and matched the other settings under easier conditions. Spe-

cifically, we found that setting k = 10 and z = 2, and using adjusted bitscores provided the best results. Some

other settings came close to the same accuracy, with z = 5 or even z = 10 often close in accuracy as long as

k = 10 was used. Switching from adjusted bitscores to raw bitscores often had only a small impact on

alignment accuracy, but reduced tree accuracy on the HF conditions.

We also saw that the improvement in alignment accuracy obtained by this setting was mainly through an

improvement in recall (i.e., reduction in SPFN), indicating that the WITCH technique of using multiple HMMs

and adjusted bitscores rather than raw bitscores is better at detecting true homologies than the technique in

UPP. Based on these trends, we set default values for the WITCH parameters to be z = 2‚ k = 10, and using

adjusted rather than raw bitscores, and used these settings in the subsequent experiments.

We provide a direct comparison of WITCH with the selected parameters to MAGUS+UPP (i.e., UPP

with MAGUS backbone) on these training data sets (Fig. 4). Note that WITCH has improved alignment

accuracy and tree accuracy on the HF versions of 1000M1 and 1000M2, while the impact on the LF

condition is extremely small. We do not show results for 16S.M and 23S.M as there was no visible

difference in alignment error between WITCH and MAGUS+UPP on these data sets, and it is not possible

to evaluate tree error as the true evolutionary trees are not known.

4.2. Experiment 2: evaluation of WITCH on simulated data sets

4.2.1. Overview. We compare WITCH (using the default settings for the parameters from Experi-

ment 1) with MAGUS+UPP (i.e., UPP with MAGUS backbone), MAGUS, two MAFFT variants (default

and L-INS-i), and Clustal-Omega, evaluating all methods with respect to alignment error and tree esti-

mation error.
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An examination of the HF model conditions (Fig. 5 and Table 2) shows that the methods vary sub-

stantially with respect to both alignment error and tree error (see Supplementary Fig. S1 for SPFN and

SPFP). The two-most accurate methods are WITCH and MAGUS+UPP, followed by MAGUS, then by

PASTA and MAFFT L-INS-i, and then by Clustal-Omega and MAFFT in default mode (but with a small

advantage to Clustal-Omega). There is a large gap between the two-most accurate methods (WITCH and

MAGUS+UPP) and MAGUS, and an even larger gap between MAGUS and the remaining methods,

especially for the more difficult model conditions (i.e., the ones with higher rates of evolution).

However, all methods except for default MAFFT and Clustal-Omega produce alignments and trees of

comparable accuracy with the best methods for the two easiest model conditions (1000L4 and 1000S4).

Although WITCH generally produces more accurate alignments and trees than MAGUS+UPP, the im-

provement is restricted to the harder model conditions; on the easiest model conditions (i.e., the ones with

lower rates of evolution), the two methods are extremely close. Specifically, WITCH has lower alignment

error and tree error than MAGUS+UPP for the five harder conditions (1000S1, 1000L3, 1000L1, 1000S2, and

1000M3) and then is slightly higher (by 0.1%) on the two easier model conditions (1000L4 and 1000S4).

An evaluation of the low-fragmentation conditions (Supplementary Fig. S2 and Supplementary

Table S6) reveals the same relative performance between methods, although in some cases with smaller

FIG. 4. Experiment 1: Alignment error (average of SPFN and SPFP) and tree error (FN, or false negative) of WITCH

with selected parameters (z = 2, k = 10, and using adjusted bitscores) and MAGUS+UPP on ROSE 1000M1 and 1000M2

data sets in high and low fragmentation conditions. HF, high fragmentary; LF, low fragmentary; SPFN, sum-of-pairs

false negative; SPFP, sum-of-pairs false positive. (a) Alignment error for HF condition. (b) Tree error for HF condition.

(c) Alignment error for LF condition. (d) Tree error for LF condition.
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differences. Clustal-Omega and default MAFFT are still the least accurate, WITCH and MAGUS+UPP are

still the most accurate, and all methods (other than Clustal-Omega and default MAFFT) have essentially the

same accuracy for the two easiest model conditions. WITCH has an advantage over MAGUS+UPP on the

model conditions with higher rates of evolution, and then ties (with no advantage to WITCH) under the two

easiest model conditions.

FIG. 5. Experiment 2: Comparison of WITCH with other methods on the ROSE 1000-taxon data sets with high

fragmentation. Top: Alignment error. Bottom: Tree error. Results are shown across 20 replicates for each model

condition (except for 1000M1, which is missing one replicate). Alignment error is the average of SPFN and SPFP, and

tree error is the missing branch (FN) rate.

Table 2. Experiment 2: Comparison of the Three-Most Accurate Methods

(WITCH, MAGUS+UPP, and MAGUS) on the High-Fragmentation Model Conditions

1000S1 1000L3 1000L1 1000S2 1000M3 1000L4 1000S4

Alignment error

WITCH 0.142 0.135 0.085 0.070 0.042 0.007 0.006

MAGUS+UPP 0.147 0.140 0.091 0.075 0.045 0.008 0.006

MAGUS 0.281 0.246 0.198 0.150 0.066 0.007 0.005

Tree error

WITCH 0.327 0.299 0.324 0.276 0.226 0.165 0.163

MAGUS+UPP 0.346 0.312 0.345 0.290 0.234 0.164 0.162

MAGUS 0.610 0.559 0.582 0.528 0.369 0.167 0.166

Top: average alignment error. Bottom: average tree error. Results shown are for the ROSE 1000-sequence data sets with high

fragmentation. Alignment error is the average of SPFN and SPFP, and tree error is the missing branch FN, or false negative rate. The

best result for each data set is boldfaced (methods are considered tied if the difference is at most 0.001).

MAGUS, Multiple sequence Alignment using Graph clUStering; SPFN, sum-of-pairs false negative; SPFP, sum-of-pairs false

positive; UPP, ultra-large alignments using Phylogeny-Aware Profiles; WITCH, WeIghTed Consensus Hmm alignment.
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4.2.2. Comparison of WITCH and MAGUS+UPP. Since WITCH and MAGUS+UPP had better

accuracy than the remaining methods, we directly compared them with respect to alignment and tree error,

as well as with running time.

4.2.2.1. Alignment error
The difference in alignment error between WITCH and MAGUS+UPP is very small on the full data sets

for both HF and LF conditions. The explanation is the obvious one: these two alignment methods always

start with the same backbone alignments and so differ only in terms of how they add the remaining

sequences to the backbone alignment. Therefore, we examine alignment error on the fragmentary se-

quences alone.

When restricted to alignments induced on the fragmentary sequences, WITCH has lower alignment error

than MAGUS+UPP for both HF and LF conditions (Fig. 6). The improvement in alignment accuracy for

WITCH under the individual HF model conditions is not statistically significant (Supplementary Table S10,

p 0.055), but becomes statistically significant when pooling only the five hardest model conditions together

( p 0.006). This suggests that the limited number of samples—at most 20 per individual model condition—

is insufficient. In contrast, the improvement in alignment error on the LF conditions is not statistically

significant for all seven conditions pooled, nor when pooling the five-most difficult conditions ( p-values of

0.307 and 0.158, respectively, Supplementary Table S10).

We then decomposed alignment error on fragmentary sequences into SPFN and SPFP. WITCH is

slightly higher than MAGUS+UPP for SPFP (by at most 0.7% per model condition), but distinctly lower

with respect to SPFN, by up to 5.6% per model condition (Supplementary Table S7). Thus, the decrease in

SPFN (increased recall) is larger than the increase in SPFP (decreased precision), which is why WITCH has

an overall improvement in alignment accuracy over MAGUS+UPP. Furthermore, the increase in SPFP is

not statistically significant ( p-values of 0.29 and 0.37 for pooled HF and LF conditions, respectively,

Supplementary Table S11), while the decrease in SPFN is statistically significant ( p-values of 0.001 and

0.025 for pooled HF and LF conditions, respectively, Supplementary Table S12).

The trend that WITCH has a better overall alignment accuracy than MAGUS+UPP, and that this is due to

improved SPFN but slightly worse SPFP, shows that the consensus alignment WITCH computes for each

FIG. 6. Experiment 2: Average alignment error (average of SPFN and SPFP) of WITCH and MAGUS+UPP on

alignments induced on the fragmentary sequences. Top: ROSE 1000-sequence HF conditions (i.e., 500 fragmentary

sequences with average length *250 bp); Bottom: ROSE 1000-sequence LF conditions (i.e., 250 fragmentary se-

quences with average length *500 bp).
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query sequence detect additional homologies than the alignment MAGUS+UPP computes for each query

sequence. Since these differ in terms of the number of HMMs used by each method and how they are

weighted, this shows that these algorithmic changes implemented in WITCH improve recall, with a small

decrease in precision, and lead to an overall improvement in accuracy.

4.2.2.2. Tree error
As seen in Figure 7, WITCH provides improved accuracy under the more difficult conditions (i.e., HF

model conditions with high rates of evolution), but not under the easier model conditions (i.e., the HF

conditions with very low rates of evolution and all the LF conditions).

We evaluate the statistical significance of the difference in tree error on the HF conditions. The dif-

ferences on the pooled five hardest data sets on HF conditions are statistically significant ( p 0.044), but

otherwise not (Supplementary Table S9). Each of the five hardest data sets on HF conditions has a p-value

<0.3, but in other individual cases, p-values are larger than 0.5. These trends suggest that the number of

replicates per model (20) may not be enough to establish statistical significance for hard individual models

on HF conditions, and that both methods may be just as good in terms of tree estimation error when data

sets are easy.

4.2.2.3. Running time
For all the data sets in this experiment, MAGUS+UPP is strictly faster than WITCH (Supplementary

Fig. S4). This is expected since WITCH does strictly more work than MAGUS+UPP given that k = 10.

However, the differences in runtime are not very large: MAGUS+UPP ranges from about 6 minutes to

about 15 minutes per data set, and WITCH ranges from about 11 minutes to about 20 minutes, each

assuming 16 cores. Thus, both methods are reasonably fast on these 1000-sequence data sets.

4.3. Experiment 3: evaluation of WITCH on biological data sets

In this experiment, we compare WITCH with MAGUS+UPP on three biological data sets (5S.3, 5S.T,

and 16S.B.ALL). These data sets range in size from 5507 sequences (5S.3) to 27,643 sequences

(16S.B.ALL), and also in average sequence length (105 bp for 5S.3, 106 bp for 5S.T, and 1272 bp for

FIG. 7. Experiment 2: Tree error (FN rate) of WITCH and MAGUS+UPP. Top: ROSE 1000-sequence HF conditions

(i.e., 500 fragmentary sequences with average length *250 bp); Bottom: ROSE 1000-sequence LF conditions (i.e., 250

fragmentary sequences with average length *500 bp).
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16S.B.ALL). Although these biological data sets have reference alignments, they do not have established

phylogenies, and so, we can only evaluate alignment errors on these data sets. We also consider a version of

16S.B.ALL with introduced fragmentation where the fragmentary sequences averaged 100 bp in length and

refer to it as 16S.B.ALL-100-HF. Because the sequences in the two 5S data sets are very short, we do not

introduce fragmentation into them.

We report SPFN and SPFP for alignments induced on the query sequences for each data set (Fig. 8).

WITCH provides an advantage over MAGUS+UPP for alignment error on the two 5S data sets and the

16S.B.ALL-100-HF data set, and it matches MAGUS+UPP on the 16S.B.ALL data set. The improvement

in accuracy is mainly through improvement in SPFN (i.e., recall), indicating that WITCH is able to recover

more true homologies than MAGUS+UPP.

Overall, this comparison shows an advantage for SPFN to WITCH over MAGUS+UPP on three of the

four data sets (5S.3, 5S.T, and 16S.B.ALL-100-HF). SPFP is essentially unchanged on all four data sets,

and analyses of 16S.B.ALL without introduced fragmentation also do not show any differences worth

noting between WITCH and MAGUS+UPP.

To more fully explore differences between WITCH and MAGUS+UPP, we evaluated WITCH and

MAGUS+UPP when using the reference alignments (instead of the MAGUS alignments) for the backbone

alignments on these data sets (see Supplementary Materials section S4). Although the alignment error drops

for both methods, WITCH continues to demonstrate improved overall alignment accuracy compared with

MAGUS+UPP, largely through reducing SPFN (i.e., improving recall) more than SPFP is increased (i.e.,

reducing precision). We illustrate the difference between WITCH and MAGUS+UPP by showing how a

single query sequence from 5S.T is aligned differently by the two methods when using the reference

alignment as the backbone (Fig. 9). Note that both WITCH and MAGUS+UPP come very close to fully

recovering the reference alignment for the query sequence, but that MAGUS+UPP misses more homologies

than WITCH does.

4.4. Alignment method selection

A consistent finding across Experiments 1 and 2 is that WITCH always matches or improves on

MAGUS+UPP for both alignment and tree accuracy, but that the degree of improvement depends on the

data set properties. Specifically, under the LF condition on the simulated data sets, the data sets have only a

few fragmentary sequences (and the fragments have average length *500 bp), WITCH alignments and

MAGUS+UPP alignments do not differ substantially in terms of SPFN and SPFP error, and trees estimated

on these alignments also do not differ substantially.

In contrast, under the HF condition, the fragments are shorter (about 250 bp for the simulated data sets)

and there are more such fragments. Thus, the degree of fragmentation impacts whether WITCH improves

on MAGUS+UPP. In addition, the degree of improvement also depends on the sequence similarity within

the data set, so that data sets with higher average p-distances are more impacted by this choice, and WITCH

provides a greater advantage over MAGUS+UPP.

Experiment 3 results are helpful in interpreting these trends. On the three data sets without any intro-

duced fragmentation, WITCH provides an accuracy advantage over MAGUS+UPP on 5S.3 and 5S.T, but

FIG. 8. Experiment 3: SPFN and SPFP of MAGUS+UPP and WITCH alignments on query sequences only for 5S.3,

5S.T, 16S.B.ALL, and 16S.B.ALL-100-HF data sets, both using the same backbone alignment and eHMM. (a) SPFN;

(b) SPFP. Note that WITCH and MAGUS+UPP are nearly indistinguishable for SPFP (precision), but WITCH im-

proves on MAGUS+UPP for SPFN (recall).
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not on 16S.B.ALL, where it matches MAGUS+UPP. Each of these data sets exhibits sequence length

heterogeneity (Fig. 1). In examining their p-distances, we see that 5S.3 and 5S.T have higher average

p-distances than 16S.B.ALL (i.e., mean p-distances for 5S.3 and 5S.E are both at least 0.418, whereas the

mean p-distance for 16S.B.ALL is only 0.21). These trends together suggest that 16S.B.ALL (due to its low

average p-distance and modest amount of sequence length heterogeneity) should be easily aligned by both

WITCH and MAGUS+UPP, but that 5S.T and 5S.3 may benefit from using WITCH instead of MAGU-

S+UPP. This prediction matches what we see on these data sets.

An examination of results on 16S.B.ALL-100-HF (i.e., with short sequences of average length only

100 bp) shows that WITCH provides an accuracy advantage over MAGUS+UPP in this case. In con-

trast, recall that the HF conditions in Experiments 1 and 2 produced fragments that were *25% of the

full-length sequences (e.g., about 250 bp for the simulated data sets). In other words, the HF conditions

in Experiments 1 and 2 produced fragments that were substantially longer than the HF condition in

Experiment 3. This may suggest that when the fragmentary sequences are sufficiently short, even data

sets with low p-distances can become difficult to align, and WITCH may provide an advantage over

MAGUS+UPP.

With this in mind, we consider the properties of biological data sets that might be important when

choosing between methods. As Supplementary Materials section S3 shows, when there is no sequence

length heterogeneity (e.g., on simulated data sets without introduced fragmentation), WITCH and MA-

GUS+UPP are both very accurate, but not the most accurate of the tested methods. Instead, MAGUS is the

most accurate on these data and is slightly more accurate than WITCH, MAGUS+UPP, and PASTA (which

are close in terms of alignment accuracy and better than MAFFT and Clustal-Omega).

However, as seen in Figure 1, biological data sets exhibit much higher levels of sequence length heterogeneity

than these simulated data sets, so that these simulated data sets without introduced fragmentation are not typical

of biological data. Therefore, the choice of alignment method clearly should be governed by a consideration of

the sequence length heterogeneity and the average p-distance. However, additional research is needed to better

understand the conditions under which each method provides the best accuracy.

5. CONCLUSIONS

We have presented WITCH, a method for multiple sequence alignment of data sets that contain

fragmentary sequences. WITCH has the same two-stage structure as MAGUS+UPP, the previous

FIG. 9. Experiment 3: A visualization using Wasabi (Veidenberg et al., 2016) of three alignments, showing how a

query sequence in 5S.T is aligned differently by WITCH and MAGUS+UPP. From top to bottom, we have the

reference alignment, WITCH alignment, and MAGUS+UPP alignment, each induced on sequences s1‚ s2‚ s3‚ s4 and

AAAAFXC. Sequences s1‚ s2‚ s3‚ s4 (namely AAAAAWP, AAAAAFV, AAAAEIS, and AAAAGKE) are from the

reference backbone alignment, which is the same for both MAGUS+UPP and WITCH. Note that MAGUS+UPP

underaligns, missing some homologies that WITCH is able to recover correctly.
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most accurate method for this problem: it builds an alignment and an eHMM on selected full-

length sequences, and then adds the remaining ‘‘query’’ sequences into the alignment using the

ensemble.

However, WITCH improves on MAGUS+UPP through two algorithmic innovations. First, WITCH

computes an adjusted bitscore for each query-HMM pair, where the adjusted bitscore is an estimate of the

probability that the HMM generates the query. Second, to add in a query sequence into the alignment on the

full-length sequence, WITCH uses an ensemble approach that allows it to combine information from all of

the HMMs in the ensemble. In contrast, MAGUS+UPP considers only one HMM for each query sequence

and uses the raw bitscores. The ensemble approach itself is interesting: to add a single query sequence into

the backbone alignment, WITCH uses the information from the HMMs to define a weighted graph (where

weights are defined using the adjusted bitscores) and then clusters the graph.

Thus, the ability to use more than one HMM in the ensemble and to interpret the information provided by

each HMM in a statistically rigorous manner (because of the use of the adjusted bitscore) are the reasons

that WITCH provides improved accuracy over MAGUS+UPP.

Although WITCH provides an advance in alignment estimation given sequence length heterogeneity,

fully addressing the challenge of improving alignment estimation for such data sets most likely will require

additional algorithmic innovations. For example, this study did not modify how UPP selects the backbone

sequences, which is likely to be an important aspect of this two-stage approach. For the simulated data sets

explored in this study, all the sequence length heterogeneity is due to the inclusion of fragmentary se-

quences, which makes the selection of full-length sequences very easy. Future work will need to consider

how to select the backbone sequence data sets where sequence length heterogeneity may be characterized

by the inclusion of excessively long sequences as well as fragmentary sequences.

Another potential improvement is changing how sequences are added into backbone alignments. In

WITCH, as in UPP, we used HMMER tools to add sequences into selected HMMs; this technique may

work well under many conditions, but was only tested for adding sequences that are short. Since data sets

with sequence length heterogeneity also contain very long sequences, it is possible that the HMM-based

methods in HMMER may not provide sufficient accuracy, and new approaches may be needed. The success

in using the weighted version of GCM to compute an extended alignment for each query sequence suggests

that other ways of computing consensus alignments, potentially equipped with statistically defined weights,

would yield improved alignment estimation beyond what is already achieved through WITCH.

In particular, other methods for computing consensus alignments have been developed (Prasad et al.,

2003; Wallace et al., 2006; Collingridge and Kelly, 2012), and future work could explore the use of these

methods instead of the GCM step in WITCH.

A basic problem that we have not touched on is how to estimate a tree when there is sequence length

heterogeneity. While some studies have shown that FastTree 2 (a very fast heuristic for maximum like-

lihood) can be highly accurate for tree topology estimation, competitive with RAxML (a much slower

heuristic) in many cases (e.g., Liu et al. 2011), other studies have shown that FastTree 2 can be much less

accurate than RAxML given the alignments with substantial sequence length heterogeneity (Smirnov and

Warnow, 2021b; Park et al., 2021). Moreover, the poor accuracy for FastTree 2 compared with RAxML

holds even if the true alignment is provided (Sayyari et al., 2017). Thus, tree estimation itself is a problem

of concern, when working with sequence length heterogeneity.

The approach presented in Ashkenazy et al. (2019) is relevant to this question, when alternative multiple

sequence alignments are available. Specifically, given a collection of multiple different alignments for the

same sequences, Ashkenazy et al. (2019) concatenated the alignments and then estimated the tree on the

concatenated alignment, and found that this improved phylogenetic accuracy. Thus, the technique in

Ashkenazy et al. (2019) could be used as a way to estimate a tree on a set of unaligned sequences with

sequence length heterogeneity: first, estimate multiple sequence alignments using a variety of methods

(e.g., WITCH or MAGUS+UPP run in different ways, MAGUS, MAFFT), then concatenate the alignments

and estimate a tree on the concatenated alignment.

In closing, given how common sequence length heterogeneity is in biological data sets, multiple se-

quence alignment methods should be evaluated on data sets that exhibit this heterogeneity, and we predict

that future studies will identify limitations in the existing alignment methods and suggest additional

opportunities for method development. WITCH provides a few useful techniques for alignment of data sets

with substantial sequence length heterogeneity, but additional techniques are needed to obtain highly

accurate alignments and subsequent phylogeny estimation under these challenging circumstances.
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