SCAMPP and BSCAMPP

Presenter: Chengze Shen

Siebel School of Computing and Data Science
University of lllinois Urbana-Champaign

Building large trees

e NP-hard optimization

o Maximume-likelihood tree estimation methods are accurate but costly
e Streaming data

o New data come in — re-estimating the phylogenetic tree is costly

o Solution: we directly add new data to the existing tree
m phylogenetic placement methods

Phylogenetic placement

S1 = -AGGCTATCACCTGACCTCCA-AA
S2 = TAG-CTATCAC- -GACCGC--GCA
S3 = TAG-CT------- GACCGC--GCT
S4 = TAC----TCAC--GACCGACAGCT
Ol =t —cerrie [7.V I

53

Phylogenetic placement

e Maximum likelihood methods (e.g., pplacer and EPA-ng)
Distance-based (e.g., APPLES-2)
e Alignment-free (e.g., App-SpaM)
o Does not require any alignment

e Best accuracy from pplacer and EPA-ng

I. Runtime and memory issues when the tree is very large
ii. Numerics for large trees (negative infinity values)

SCAMPP [1] and BSCAMPRP [2] are designed to scale pplacer and EPA-ng to
large backbone trees, with high accuracy and reduced runtime

[1] Wedell, Eleanor, Yirong Cai, and Tandy Warnow. “SCAMPP: Scaling Alignment-Based Phylogenetic Placement to Large Trees.” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2022, 1-1. https://doi.org/10.1109/TCBB.2022.3170386.

[2] Wedell, Eleanor, Chengze Shen, and Tandy Warnow. “BSCAMPP: Batch-Scaled Phylogenetic Placement on Large Trees.” IEEE Transactions on Computational Biology and
Bioinformatics, 2025, 1-14. https://doi.org/10.1109/TCBBI0.2025.3562281.

https://doi.org/10.1109/TCBB.2022.3170386
https://doi.org/10.1109/TCBBIO.2025.3562281

SCAMPP/BSCAMPP for phylogenetic placement

e Divide the placement problem into multiple sub-problems, enabling
better scalability.

method description
SCAMPP creates a subproblem for each new sequence.
BSCAMPP creates a subproblem for a group of new sequences.

Both solve each subproblem with pplacer or EPA-ng.

SCAMPP pipeline
Stage 1 Stage 2 Stage 3

Backbone Tree T () Backbone Tree T ()
Subtree T'

A new sequence X is Subtree extracted from the Placement of X transits to the
assigned to its closest leaf selected leaf; X is placed to backbone tree.
the subtree.

Delta Error

Comparison to other placement methods

_10°

3 = 2200

E 102 N
2 o S

£ £
1 - . l I qé .

o . I . 0 S -
S 1@ O 4@ o0& o© S @ © SIS S @ O @ 0@ o©

\Sc “\Qq\e QPOP&‘\Qq\Q §‘\?Q\?' @\Q?\Q \S’z‘)‘ Q\C ?PGP ?Q\Q §‘\?Q\ 0 R P??\S’/Px‘\??\e ?P\’(\P&‘\?Q\Qp.\’\??\ PX‘\Qq\Q
Q,e P < %60 %90 P el &~ O LT L

> Placing 20,000 fragmentary new sequences into a 180,000-leaf phylogenetic tree.
> BSCAMPP(e) denotes that it is run with EPA-ng (“(p)” for pplacer).

(left) placement error, lower is better

(middle) runtime usage

(right) memory usage

Impact of using BSCAMPP - abundance profiling

CAMI-1Il Marine dataset (pacbio)

1.0
8 TIPP3-fast
% —s— Kraken2(filtered)
+ 0.8 —— Bracken(filtered)
2
)
.80.6 i
o "
N
©
5 \
< .
O'Os S -\ < S O
e W2 QM 3 227 A 0
o2° o O o & Qw!\(\d\ogé
6\>Qe

TIPP3-fast [1] uses BSCAMPP to place
metagenomic reads onto taxonomic trees
Higher profiling accuracy compared to
Kraken2 and Bracken.

[1] Shen, Chengze, Eleanor Wedell, Mihai Pop, and Tandy Warnow. “TIPP3 and TIPP3-Fast: Improved Abundance Profiling in Metagenomics.” PLOS Computational Biology 21, no. 4

(April 4, 2025): e1012593. https://doi.org/10.1371/journal.pcbi.1012593.

10

https://doi.org/10.1371/journal.pcbi.1012593

SCAMPP/BSCAMPP code

BSCAMPP and SCAMPP - Two Scalable Phylogenetic
Placement Methods and Frameworks

pypi v1.0.7 | python 3.7 | 3.8 | 3.9 | 3.10 | 3.11 | 3.12 | build passing [license |GPL | CHANGELOG

Table of Contents

1. Overview

2. Installation

3. Usage

4. Example Code and Data

Overview

* Inputs
i. Reference tree to place sequences into.

ii. Alignment of reference sequences (protein or nucleotide).
iii. Alignment of query sequences (can be combined with ii.).

iv. Tree info file.
= (EPA-ng as base method), RAXML-ng info file, typically with suffix .bestModel .

= (pplacer as base method), RAXML-ng or FastTree log file containing model parameters.

* Output
i. Placement results of query sequences in the reference tree in .jplace format.

Implemented with Python and C++
(requires cmake installed)

Available on GitHub and PyPI:
https://github.com/ewedell/lBSCAMPP

11

https://github.com/ewedell/BSCAMPP

Installation and Usage: SCAMPP/BSCAMPP

1. install with pip (--user if no root access)
pip install bscampp [--user]

2. Four binary executables will be installed. The first time
running any will create a config file at

~/.bscampp/main.config that resolves the links to all

= external software (e.g., epa-ng, pplacer)

---- BSCAMPP functions

bscampp [-h] # or
run_bscampp.py [-h]

---- SCAMPP functions
scampp [-h] # or
run_scampp.py

| will demonstrate some of the use cases in the following slide

12

Scenarios to use: BSCAMPP

1. Scenario 1: placing new sequences into an existing tree
o Note: all commands require a model file that describes the input tree
i. E.g., log file from the RAXML-ng/FastTree-2 tree estimation

run_bscampp.py -i [raxml best model] -t [existing tree] -a [alignment file]

1. Scenario 2: changing the base placement method (EPA-ng to pplacer)

run_bscampp.py -i [logfile from either RAXML/FastTree] -t [existing tree] -a [alignment file] --placement-method pplacer

13

Sample logging

1. Scenario 1: placing new sequences into an existing tree

run_bscampp.py -i [raxml best model] -t [existing tree] -a [alignment file]

pipeline.py (line 34): WARNING: Initializing ProcessPoolExecutor...

functions.py (line 89): INFO: Reading in input data...

functions.py (line 147): INFO: Time to read in input data: 0.0764616369997384 seconds
functions.py i 57 INFO: Computing closest leaves for query sequences...
functions.py 222 INFO: Time to compute closest leaves: 0.11823938100133091 seconds
functions.py 231)k INFO: Adding query votes to the placement tree...
functions.py i 25T0)% INFO: queries left to assign:

functions.py i 2518) INFO: queries left to assign: 72

functions.py i 2571): INFO: queries left to assign:

functions.py 25i7) INFO: queries left assign:

functions.py 2571 INFO: queries left assign:

functions.py 2517) INFO: queries left assign:

functions.py 257715 INFO: queries left assign:

functions.py 25/8) INFO: queries left assign:

functions.py 257)1 INFO: queries left assign:

functions.py 25i71)5 INFO: queries left assign:

functions.py 257) INFO: queries left assign:

functions.py 257):: INFO: queries left assign:

functions.py i S318) : Time to assign queries to subtrees: 0.3356298080034321 seconds
functions.py i 412): NFO: Performing placement on each subtree with epa-ng...
functions.py i 428): NFO: Submitting jobs for subtree placement...

functions.py i 507 \ - Subtree 6/12 with 1 queries

functions.py 507 \ Subtree 7/12 with 3 queries

functions.py 507): NFO: Subtree 3/12 with 12

functions.py 507): Subtree 4/12 with 11

functions.py i 50/78)5 Subtree 5/12 with 12

functions.py i 50/7) NFO: Subtree 1/12 with 12

functions.py 507): NFO: Subtree 2/12 with 20

functions.py 507): \ Subtree 12/12 with 1 queries

functions.py 507): \ Subtree 8/12 with 6 queries

functions.py 507): 3 Subtree 11/12 with 3 queries

functions.py 507): 2 Subtree 10/12 with 5 queries

functions.py 507): - Subtree 9/12 with 14 queries

functions.py 584): Final number of subtrees used: 12

functions.py 594): : Time to place queries to subtrees: 3.7278890250017866 seconds
functions.py 603): \FO: Writing aggregated placements to local...

functions.py 614): : Time to build final jplace file: 0.0022617619979428127 seconds
pipeline.py 77): WARNING: Shutting down ProcessPoolExecutor...

pipeline.py 79): WARNING: ProcessPoolExecutor shut down.

pipeline.py 83): INFO: Removing temporary files...

pipeline.py 180): INFO: - Removed tmp0

pipeline.py 88): INFO: BSCAMPP completed in 4.279889469995396 seconds...

Sample output

1. Scenario 1: placing new sequences into an existing tree

run_bscampp.py -i [raxml best model] -t [existing tree] -a [alignment file]

Output to directory (default) —» bscampp output/*

Output placement file —» bscampp output/bscampp result

.Jplace

15

Summary

SCAMPP/BSCAMPP

o Maximume-likelihood phylogenetic placement methods on very large trees (200,000
sequences and more)

o Scales to large data than other maximum-likelihood methods (pplacer, EPA-ng)

o Higher accuracy than other types of phylogenetic placement methods

o BSCAMPP: much faster than SCAMPP and about as accurate

This work was supported by U.S. National Science Foundation grants 2006069 and 2316233
(to Tandy Warnow).

16

